Data mining algorithms : explained using R /
by Cichosz, Pawel,
Physical details: 683 pages ; illustration ; ISBN: 9781118332580.Item type | Location | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Electronic Books | E-Resource Section | E-Books | 006.312 (Browse shelf) | Available |
Part I. Preliminaries -- 1. Tasks -- 2. Basic statistics -- Part II. Classification -- 3. Decision trees -- 4. Naèive Bayes classifier -- 5. Linear classification -- 6. Misclassification costs -- 7. Classification model evaluation -- Part III. Regression -- 8. Linear regression -- 9. Regression trees -- 10. Regression model evaluation -- Part IV. Clustering -- 11. (Dis)similarity measures -- 12. k-Centers clustering -- 13. Hierarchical clustering -- 14. Clustering model evaluation -- Part V. Getting better models -- 15. Model ensembles -- 16. Kernel methods -- 17. Attribute transformation -- 18. Discretization -- 19. Attribute selection.
"This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective"--
There are no comments for this item.